skip to main content


Search for: All records

Creators/Authors contains: "Jafari, Omid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Similarity search in high-dimensional spaces is an important task for many multimedia applications. Due to the notorious curse of dimensionality, approximate nearest neighbor techniques are preferred over exact searching techniques since they can return good enough results at a much better speed. Locality Sensitive Hashing (LSH) is a very popular random hashing technique for finding approximate nearest neighbors. Existing state-of-the-art Locality Sensitive Hashing techniques that focus on improving performance of the overall process, mainly focus on minimizing the total number of IOs while sacrificing the overall processing time. The main time-consuming process in LSH techniques is the process of finding neighboring points in projected spaces. We present a novel index structure called radius-optimized Locality Sensitive Hashing (roLSH). With the help of sampling techniques and Neural Networks, we present two techniques to find neighboring points in projected spaces efficiently, without sacrificing the accuracy of the results. Our extensive experimental analysis on real datasets shows the performance benefit of roLSH over existing state-of-the-art LSH techniques. 
    more » « less
  2. null (Ed.)
    Finding similar images is a necessary operation in many multimedia applications. Images are often represented and stored as a set of high-dimensional features, which are extracted using localized feature extraction algorithms. Locality Sensitive Hashing is one of the most popular approximate processing techniques for finding similar points in high-dimensional spaces. Locality Sensitive Hashing (LSH) and its variants are designed to find similar points, but they are not designed to find objects (such as images, which are made up of a collection of points) efficiently. In this paper, we propose an index structure, Bitmap-Image LSH (bImageLSH), for efficient processing of high-dimensional images. Using a real dataset, we experimentally show the performance benefit of our novel design while keeping the accuracy of the image results high. 
    more » « less